Bioactive Surface Modification of Hydroxyapatite
نویسندگان
چکیده
The purpose of this study was to establish an acid-etching procedure for altering the Ca/P ratio of the nanostructured surface of hydroxyapatite (HAP) by using surface chemical and morphological analyses (XPS, XRD, SEM, surface roughness, and wettability) and to evaluate the in vitro response of osteoblast-like cells (MC3T3-E1 cells) to the modified surfaces. This study utilized HAP and HAP treated with 10%, 20%, 30%, 40%, 50%, or 60% phosphoric acid solution for 10 minutes at 25°C, followed by rinsing 3 times with ultrapure water. The 30% phosphoric acid etching process that provided a Ca/P ratio of 1.50, without destruction of the grain boundary of HAP, was selected as a surface-modification procedure. Additionally, HAP treated by the 30% phosphoric acid etching process was stored under dry conditions at 25°C for 12 hours, and the Ca/P ratio approximated to 1.00 accidentally. The initial adhesion, proliferation, and differentiation (alkaline phosphatase (ALP) activity and relative mRNA level for ALP) of MC3T3-E1 cells on the modified surfaces were significantly promoted (P < 0.05 and 0.01). These findings show that the 30% phosphoric acid etching process for the nanostructured HAP surface can alter the Ca/P ratio effectively and may accelerate the initial adhesion, proliferation, and differentiation of MC3T3-E1 cells.
منابع مشابه
Osteoclast Response to Bioactive Surface Modification of Hydroxyapatite
The aim of this study was to evaluate the in vitro response of osteoclast-like cells (RAW 264.7 cells) to a bioactive hydroxyapatite (HAP) surface that was modified using the 30% phosphoric acid-etching procedure reported in our previous paper (2013). The cells on the bioactive HAP surface were multinucleated and were larger than those on the untreated HAP surface. The cell occupancies were gre...
متن کاملFabrication, Characterization and Osteoblast Response of Cobalt-Based Alloy/Nano Bioactive Glass Composites
IIn this work, cobalt-based alloy/ nano bioactive glass (NBG) composites with 10, 15 and 20 wt% NBG were prepared and their bioactivity after immersion in simulated body fluid (SBF) for 1 to 4 weeks was studied. The scanning electron microscopy images of two- step sintered composites revealed a relatively dense microstructure the density of which decreased with the increase in the NBG amount. M...
متن کاملSurface modification for titanium implants by hydroxyapatite nanocomposite
Background: Titanium (Ti) implants are commonly coated with hydroxyapatite (HA). However, HA has some disadvantages such as brittleness, low tensile strength and fracture toughness. It is desirable to combine the excellent mechanical properties of ZrO2 and the chemical inertness of Al2O3 with respect to the purpose of this project which was coating Ti implants with HA-ZrO2-Al2O3 to modify the s...
متن کاملLaser surface modification of hydroxyapatite and glass-reinforced hydroxyapatite.
Surface treatment of materials with excimer laser radiation often results in the formation of a rough columnar or cone-shaped surface topography, which leads to a considerable increase in the surface area. As a result, the search for a non-porous bioactive material with adequate mechanical properties and a high surface to volume ratio, similar to porous materials, which could be used for drug d...
متن کاملSynthesis of Monodispersed Ag-Doped Bioactive Glass Nanoparticles via Surface Modification
Monodispersed spherical Ag-doped bioactive glass nanoparticles (Ag-BGNs) were synthesized by a modified Stöber method combined with surface modification. The surface modification was carried out at 25, 60, and 80 °C, respectively, to investigate the influence of processing temperature on particle properties. Energy-dispersive X-ray spectroscopy (EDS) results indicated that higher temperatures f...
متن کاملHeat Treatment Of Cobalt-Base Alloy Surgical Implants With Hydroxyapatite-Bioglass For Surface Bioactivation
ASTM F-75 Cobalt-base alloy castings are widely used for manufacturing orthopedic implants. This alloy needs both homogenization and solutionizing heat treatment after casting, as well as bioactivation of the surface to increase the ability of tissue bonding. In this study, ASTM F-75 Cobalt-base substrate was heat treated at 1220°C for 1 hour in contact with Hydroxyapatite-Bioglass powder in or...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
دوره 2013 شماره
صفحات -
تاریخ انتشار 2013